

### MANTEC

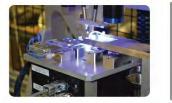


## **Ensuring Automation Success**












### Introductions

#### Greg Selke: CEO Andrew Cook: VP Engineering Jonathan Lewis: Senior Sales Engineer









#### > 🕂 🔹 📮 🖌 🤉 🕫


# Who is ONExia?

- Located in Exton, Pennsylvania
- 32 Years in High Technology Distribution
- 28 Years in Custom Machine Building and Integration













Greg Selke

#### 🖈 🕂 🛃 🛃 🖓

# **Topics for This Morning**

- Reasons to Automate
- Characteristics of a Successful Automation
  Project
- Case Studies of ONExia Past Projects
- Collaborative Robots
- Questions







**Greg Selke** 





# Why Automate?

- Improve Quality
- Improve Throughput
- Eliminate Ergonomic Injuries
- Improve Safety
- Reduce Costs
- The Process Cannot be Done Manually
- Can the process or application accommodate Automation?
- Will the upstream and downstream processes be affected with the Automation implemented?









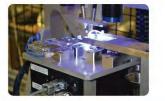


# What makes an automation project successful?












#### **Choose the Right Automation Partner**

- Does your company have the experience to develop the automation in house?
- Does your company have the time and resources to make the project a success?
- How do you choose the right partner?










> 🕂 🛃 📮 🖌 🤗 📽

#### Choosing the Right Automation Partner Can Lead to Automation Success

- What level of experience do they have?
- At ONExia, it is truly a collaborative experience
  - You are very knowledgeable about your process and product
  - ONExia has a high level of expertise when it comes to Motion Control, Robotics and Machinery Automation
- Get your Partner involved early on in a project, as we typically offer Automation Suggestions based on our Extensive Experience
- ONExia is frequently considered an Extension of our Customer's Engineering Department









> 🕂 🛃 🚍 🖌 🤇 🌮

# **Automation Success Characteristics**

- Defining a Clear Objective
- Pursuing a Feasible Concept
- Control the Process Variables
- Keep the Scope of the Project Clear and Controlled
- Specify the Proper Components for the Machine
- Skilled Personnel
- Keep it Simple
- Pay Attention to Details
- Collaboration through Communication

- Collaboration with End Users
- Well Structured Software
- Sufficient Time / Parts for Testing
- Complete Final
  Documentation
- Training
- Support
- End User Ownership
- These Characteristics ensure a Successful Automation Project









# **ONExia's Machine Design Process**

- Initial Concept / Budget
  Kick-Off Meeting
  - Specification
    Development
  - Proposal Development
- Order Received

- Introduction
  - Review
  - Inspection
  - Schedule
  - Acceptance Criteria
  - Technical Review
- Samples
- End Result



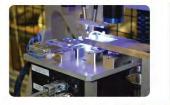
#### > 🕂 🔄 🚍 🖌 🤉 🐲

# **Machine Design Process**

#### • Design

- Prototype Review
- Preliminary Design Review
- Design Completion

- Design Review
- Machine Assembly
- Machine Testing
- Acceptance
- Shipment
- Additional Services
  - Installation
  - Startup
    - Training Services
  - Field Service
  - Maintenance






# **ONExia Case Studies**

### 28 Years of Custom Machine Building and Integration











## **Part Assembly**







# **Reasons for Success**

- Identify And Prototype Potential Risk Areas
- Software Approach State Logic
- Collaborate With The Client And End User About Their Existing Process And Its Strengths and Weaknesses
- Met The Project Throughput Objective Handling a Variety of SKUs





# **Precision Assembly**







# **Reasons for Success**

- Proper Component Selection:
  - Precision Positioning Stages
  - High Resolution Cameras
- Experienced Engineers understood the challenges of Designing to meet the precision requirements
- Extensive Testing with Customer Supplied Parts to ensure success with varying parts
- Met the Project Objectives of Schedule, Precision, Simplicity and Reliability overseas





## **Plastic Parts Assembly**







# **Reasons for Success**

- Proper Component Selection:
  - Servo Motors To Collect The Parts To Identify Missing Parts
- A Strong Concept That Kept The Number Of Parts To A Minimum
- Keep Control Of The Products Once Obtained
- Met The Project Objectives Of Improving Quality And Cost Savings Through A Reduction In Labor



# Component Inspection, Marking and Packaging







# **Reasons for Success**

- A Strong Concept That Was Expandable To Meet The Variety of Products with Minimal Changeover
- Attention to Detail That Considered The Variety
  Of Parts Through Every Stage Of Design
- Close Collaboration With The Customer's Design Team To Improve Reliability
- Met The Goals Of The Project's Schedule, Robustness For Overseas Startup, Flexible Design To Handle A Variety Of Parts



> 🕂 🛃 📮 🖌 🤇 🌮

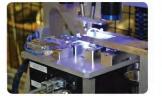
# **Automation Success Characteristics**

- Defining a Clear Objective
- Pursuing a Feasible Concept
- Control the Process Variables
- Keep the Scope of the Project Clear and Controlled
- Specify the Proper Components for the Machine
- Skilled Personnel
- Keep it Simple
- Pay Attention to Details
- Collaboration through
  Communication



- Collaboration with End User
- Well Structured Software
- Sufficient Time / Parts for Testing
- Complete Final Documentation
- Training
- Support
- End User Ownership
- These Characteristics ensure a Successful Automation Project








# **Collaborative Robots**











**Greg Selke** 



# **Collaborative Robots**

- A collaborative robot is one designed to work side by side with humans.
- A <u>smart</u> collaborative robot is one designed to work side by side with humans and which exhibits a degree of "artificial intelligence".









### **CHALLENGES FACING MANUFACTURERS TODAY**

#### Labor shortage

#### **Rising labor cost**

Manufacturing agility Short life cycles Fast ramp to volume Manufacture near customers Existing automation solutions can be expensive and inflexible



# Low cost labor models have run their course





# Difficulty **finding** and **retaining** skilled (and unskilled) laborers





### Manufacturers seek agility Short runs, time to volume, build local





# **INDUSTRIAL ROBOTS**

Expensive

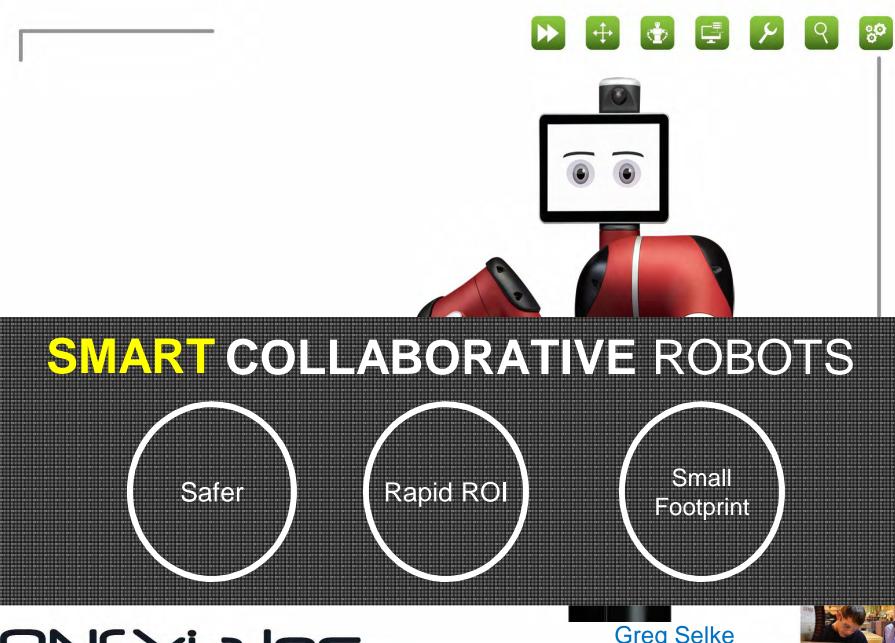
Fixed

Caged

#### SMART COLLABORATIVE ROBOTS

Our customers are building factories of the future, today

5X×


Our smart, collaborative robots adapt to real-world variability, are agile enough to change applications quickly, and perform tasks like humans do

We've created this new category of robots for the 95% of tasks that couldn't be economically or practically automated before

# **BASIC COLLABORATIVE ROBOTS**



botics



NEXia Inc

Greg Selke



#### SAFETY STRATEGY

ISO 10218/R15.06

Takes the robot out of the cage!

Describes 4 Categories for Collaborative Robot

- Safety-Rated Monitored Stop
- Hand Guiding
- Speed and Separation Monitoring
- Power and Force Limiting

ISO/TS15066

New Collaborative Robot Standard

- Robot that is purposefully designed to work in direct cooperation with people
- Defines criteria for Risk
  Assessment

Risk Assessment



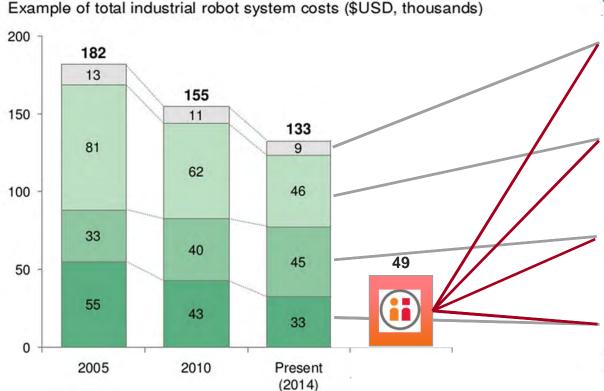
Force Limited

Power and

Defined under ISO 10218/R15.06

• Our 'inherent safety' strategy flows from this categorization

A Risk Assessment must be performed when work cell is set up


- The robot is a partially complete piece of machinery
- End effector and parts are considered

**Greg Selke** 



ONEXIA INC

#### Advanced industrial robots are increasing in performance while costs continue to fall steadily



#### Future costs trends

#### Project management

Has consistently been ~5%-10% of total system costs; absolute cost decline expected



#### Systems engineering (e.g.,

programming, installation) Gains from offline programming mostly obtained; decrease expected to slow given the minimum cost of installation

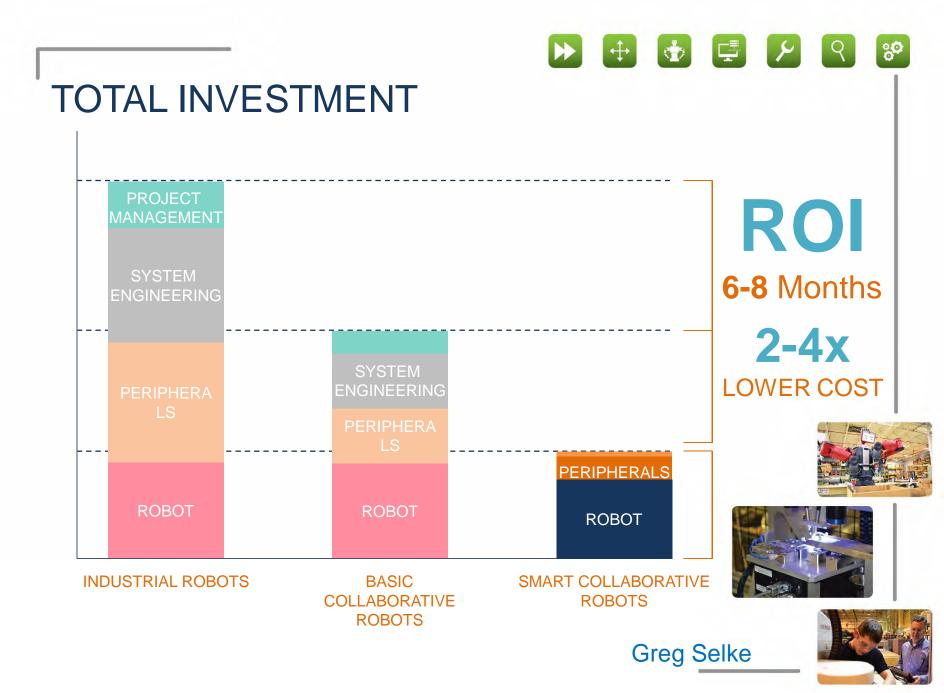
Peripherals (e.g., safety barriers/systems, sensors) Will see additional drop due to removal of safety barriers

Robot (includes software) Minimal declines expected given pricing is close to material cost for high-purchase-volume automotive industry

#### Meanwhile, robot performance is increasing at an estimated 5% per year<sup>1</sup>

Average guality adjustment from 1990-2004 was ~5% on top of price change.

Note: Example costs are for a spot welder (largest current application) in the US automotive industry, numbers in nominal dollars.


Sources: ABB "Economic Justification for Industrial Robotic Systems" (2007), IFB "World Robotics-Industrial Robots 2013," expert interviews, BCG analysis THE BOSTON CONSULTING GROUP

2014 Rethink Robotics, Inc. All rights reserved

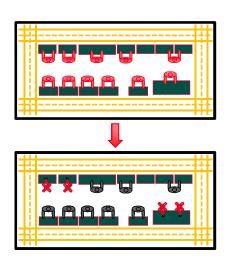
33

6

Copyright @ 2015 by The Boston Consulting Group, Inc. All rights reserved



#### **CUSTOMER RETURN ON INVESTMENT IN UNDER A YEAR**




| 1 | Robot                                      | List Price<br>\$29,000 |   |
|---|--------------------------------------------|------------------------|---|
|   | End effector)                              | \$1,750                |   |
| 4 | Pedestal                                   | \$3,500                |   |
|   | 3-Year warranty &<br>software subscription | \$7,000                |   |
| - | Total                                      | \$41,250               | _ |
|   | Services                                   | \$5k-\$10k             |   |
|   |                                            |                        |   |





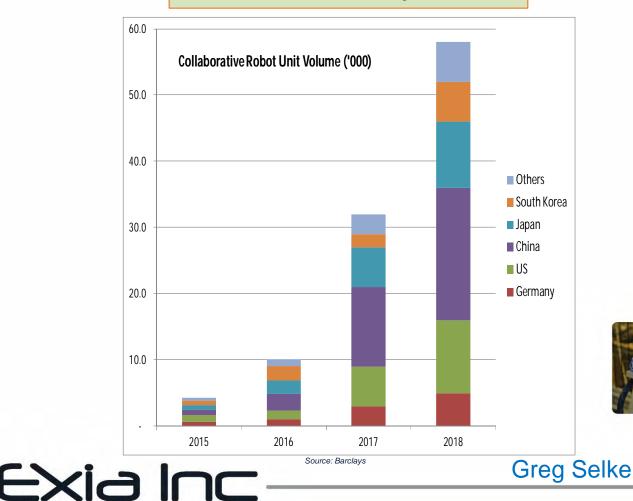




SMB customer economics 1 direct labor per shift x 2 shifts = \$60,000/yr (\$30,000/operator/shift)

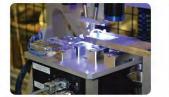
ROI = 8-9 months




Large customer economics – Contract Mfr in Mexico 4 robots per line, redirecting 3 direct labor operators per shift 1,000 robots instead of 2,250 workers (750 workers x 3 shifts)

> At \$1,100 /worker/shift/month in Mexico = \$29.7M annual labor savings and an 18-month ROI In the US; ~3x labor costs; 6 month ROI




# **Collaborative robot market**

#### **Dramatic Market Expansion**



Excellence in Automation







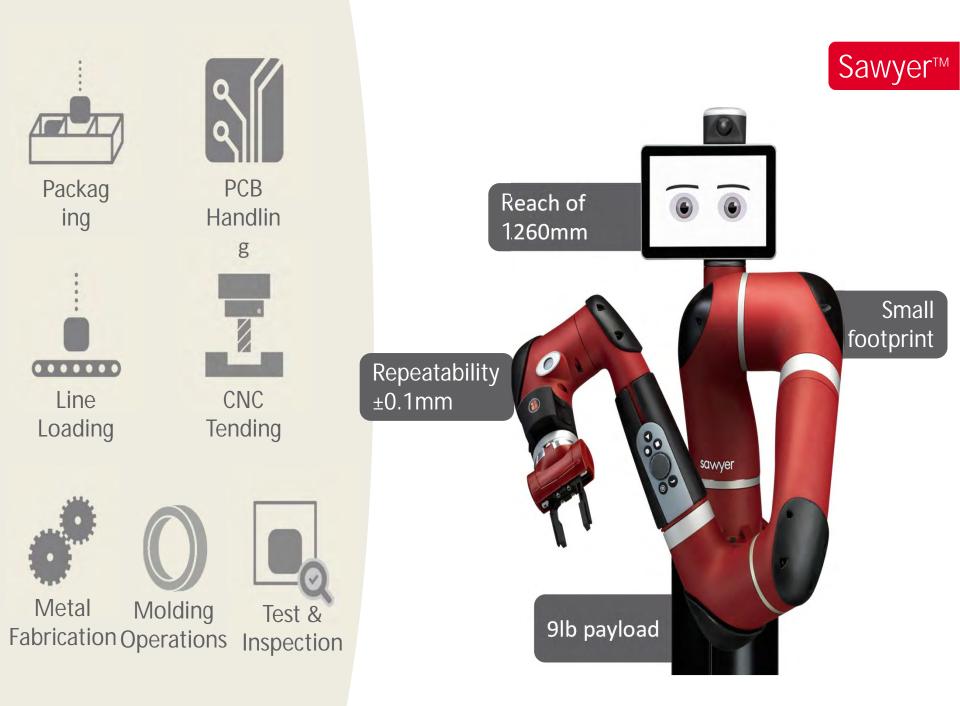
# A NEW CATEGORY: SMART COLLABORATIVE ROBOTS





## **Collaborative Robots**

#### Adapt to Variability


- Force based behaviours
- Machine vision
- Compliance allows arm to flex when necessary

Change Applications Quickly

- Robot Positioning System
- Train by Demonstration
- Intera allows easy integration with existing automation equipment

#### Work Like People Do

- Work with current fixturing
- Often no need to change the way parts are presented or handed off
- Share workspace with people



# Thank-you For Attending Our Presentation!

# *We will be available at the ONExia display in the main room.*

# **Questions?**







